
5-1

Machine learning

Lecture 5

Lecturer: Haim Permuter Scribe: Gal Rattner

I. INTRODUCTION

Throughout this lecture we introduce the overfitting problem and regularization

methods such as L-norm and dropout. Parts of this lecture are inspired by the work

of Michael Nielsen [1] and T. Cover’s book [3]. This lecture assumes you are familiar

with the basic probability theory. The notation here are similar to those of the previous

lectures.

II. OVERFITTING AND REGULARIZATION

Assume we want to fit a polynomial model to a set of training pairs

(x1, y1), . . . , (xN , yN), s.t. it will generalize in the best way and will give regression

estimation for some test set xN+1, . . . , xN+K . It is clear from Figure 1 that the 8th order

polynomial has smaller error from each one of the training examples, comparing to the

1st order polynomial. As the order of the polynomial increases, it consists of more free

parameters and therefore it is more likely to fit better to the training set. Though, it is

not clear whether or not it generalizes better and will fit better to an unseen test set, as

can be seen in this example.

This phenomena is called overfitting and it is prevalent in models consist of large

number of parameters. Overfitting is one of the major challenges when training deep

neural networks, which naturally consists of enormous number of parameters. In order to

avoid the overfitting phenomena, there has been suggested several forms of regularization,

including adding penalty term to the cost function, using dropout or max-norm constraints

over the weights inside the net.

5-2

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10
1st order polynomial

8th order polynomial

Training examples

Test examples

x

y

Figure 1. Two different polynomial curves fitted to a set of training examples.

Definition 1 (L-Norm Regularization) Let C0 be a cost function as presented in the

previous lectures, then the term λ ‖w‖L is the L-norm regularization term added to the

cost function. The total cost argument is given by

C = C0 + λ ‖w‖L , (1)

where λ is the regularization hyper-parameter fixed to determine the influence of the

regularization term on the total cost, and ‖w‖L is the L-norm expression for the entire

set of weights in the model.

Among the most common L-norm regularization methods are the L2 and L1 regularization

terms.

L2 regularization: Using the L2 regularization term, the total cost function is given

by

C = C0 +
λ

2n
‖w‖2

2

5-3

= C0 +
λ

2n

∑

i

w2

i , (2)

where C0 can be the quadratic, cross-entropy or other cost function, wi are the weights in

the net, and the hyper-parameter λ scale the regularization term to have gentle influence

on the total cost C, and holds λ > 0. The influence of the L2 regularization term is clear

when observing the partial derivatives of the cost function in equation (2), i.e.

∂C

∂w
=

∂C0

∂w
+

λ

n
w, (3)

and

∂C

∂b
=

∂C0

∂b
. (4)

The partial derivatives can be computed using backpropagation, as described in lecture

4, and the update rules are given by

b → b− η
∂C0

∂b
, (5)

and

w → w − η
∂C0

∂w
−

ηλ

n
w

=

(

1−
ηλ

n

)

w − η
∂C0

∂w
. (6)

This update rule is the same as the usual gradient descent update rule, except we rescale

the weights first by factor ηλ

n
. This rescaling factor is sometimes referred to as the weight

decay factor.

L1 regularization: Using the L1 regularization term the total cost argument is given

by

C = C0 +
λ

n

∑

i

|wi|, (7)

where λ > 0.

The partial derivatives of the cost function with respect to w is given by

∂C

∂w
=

∂C0

∂w
+

λ

n
sign(w). (8)

5-4

The update rule for w is given by

w → w − η
∂C0

∂w
−

ηλ

n
sign(w). (9)

We notice that both L2 and L1 regularization are penalizing large weights, and causing the

weights to decrease toward zero. The difference is in the rate of decrement, where with

L1 regularization the decrement rate is constant, with L2 regularization the decrement

rate is proportional to the size of the weight w.

III. DROPOUT

A very common regularization method of deep neural network which have proven its

improvement skills is the dropout, as presented in [4]. Unlike the regularization methods

described above, dropout modify the network’s connections rather than the cost function.

The way dropout works is by setting each activation node to zero with some prefixed

probability p ∈ [0, 1], for each training iteration. The hyper-parameter p is generally set

before the training session starts. On that way, for an input or hidden layer with Nl

nodes, at each training iteration we get an average of only p × Nl active nodes in the

net. Notice that we do not drop any node at the net’s output layer. In order to keep the

total sum of activations coming out of each layer constant, we multiply any un-dropped

activation by factor 1

p
. Repeating this method over and over during the training operation,

the deep neural network will learn a set of weights and biases which generalize better

than the regular training.

The motivation of using this method can be given in three main points:

1) Ensemble of networks: Training a single network using dropout is similar to training

an ensemble of networks over the same training dataset. For each training instance, a

somewhat different network is trained. When using an ensemble of nets, each started

with different random starting point, its final training state will be slightly different.

Considering that, combining the results over the ensemble will almost surely reduce

the error and give better result. The same assumption stands for a single network

trained with dropout.

5-5

2) Reduced number of trained parameters: The number of trained weights is reduced

per training instance, making the number of co-adaptations between different nodes

smaller and easier to train.

3) Avoid overfitting: Specific weights are prevented from growing too large and push

the whole network toward overfitting, because they are dropped and untrained with

probability p. The survived nodes at each instance are trained using only part of the

total information learnt to that point, making overfitting less plausible.

Visual example for dropout can be seen here were in Figure (2) we see a fully-

connected net, and in Figure (3) we see the net after applying dropout on the hidden

layer. Notice that the droped nodes are kept blurred, signifying that the nodes are not

deleted but only ignored for a specific training iteration.

Figure 2. Fully connected neural network.

5-6

Figure 3. Fully connected neural network after applying dropout on the hidden layer.

REFERENCES

[1] M. Nielsen Neural Networks and Deep Learning, Chap. 3. http://neuralnetworksanddeeplearning.com/chap3.html.

January 2016.

[2] H. Permuter Introduction to Information Theory course. http://www.ee.bgu.ac.il/ haimp/it/index.html

[3] T. M. Cover and J. A. Thomas Elements of Information Theory, Chap. 1.

[4] N. srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, (2014). Dropout: a simple way to

prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1), 1929-1958.

	Introduction
	Overfitting and Regularization
	Dropout
	References

